
On partitioning and reordering problems in a
hierarchically parallel hybrid linear solver

François-Henry Rouet
Lawrence Berkeley National Laboratory

Joint work with: I. Yamazaki (U. T. Knoxville), X. S. Li (LBNL), B. Uçar (ENS Lyon)

IPDPS 2013, PDSEC Workshop, May 24th, 2013

The PDSLin solver (developers I. Yamazaki, X. S. Li)

PDSLin is a hybrid sparse linear solver:
Schur complement method (non-overlapping domain
decomposition).
Two-level parallelism: intra- and inter-domain parallelism.
Small number of subdomains (typically 8–64) for stability.
Explicit approximate Schur complement (dropping).

D

D
D

D

D

D

D
7

6

4

1

2
3

5

A =

D1 E1

D2 E2
.

Dk Ek
F1 F2 . . . Fk S

F.-H. Rouet, IPDPS 2013, PDSEC Workshop, May 24th, 2013 2/17

The PDSLin solver – continued

Package: http://crd-legacy.lbl.gov/FASTMath-LBNL/Software/

C and MPI, with Fortran interface.
Unsymmetric/symmetric, real/complex, multiple RHS.

Features
Parallel graph partitioners:

• PT-Scotch.
• ParMETIS.

Subdomains solvers:
• SuperLU, SuperLU_MT, SuperLU_DIST.
• MUMPS.
• PDSLin.
• ILU (inexact solution).

Schur complement solvers:
• PETSc.
• SuperLU_DIST.

F.-H. Rouet, IPDPS 2013, PDSEC Workshop, May 24th, 2013 3/17

Two partitioning/reordering problems

We focus on two problems that arise when:
Permuting the matrix into doubly-bordered form:

A =

D1 E1

D2 E2
.

Dk Ek
F1 F2 . . . Fk S

Updating the Schur complement (triangular solution with
multiple sparse RHS):

S ←S −
k∑

`=1
F`D−1

` E`

=S −
k∑

`=1

(
U−T

` F`

)T (
L−1

` E`

)
F.-H. Rouet, IPDPS 2013, PDSEC Workshop, May 24th, 2013 4/17

Multi-constraint
partitioning

The partitioning problem

Partitioning: we consider the graph of A + AT ; we want a
doubly-bordered form.
Objective: minimize the size of the Schur complement.
Balance constraints:

• Subdomain constraints: balance the dimension of D` and the
number of nonzeros in D`.

• Interface constraints: balance the dimension of E` and the
number of nonzeros in E`.

D1 E1

D2 E2
.

Dk Ek
F1 F2 . . . Fk S

F.-H. Rouet, IPDPS 2013, PDSEC Workshop, May 24th, 2013 6/17

The partitioning problem

Assume that we use graph partitioning and that each vertex
corresponds to a row.
Weights need to be assigned to each row for each balance
objective, so that the weight of a part (row stripe) is their sum.
Issue: one cannot know in advance which entries in a row will be
in a the diagonal block or the border. The balance objective is a
complex function of the partition that cannot be assessed by a
looking at a priori weights.
“Chicken-and-egg problem”[Pınar & Hendrickson ’01].

D1 E1
D2 E2

.
Dk Ek

F1 F2 . . . Fk S

F.-H. Rouet, IPDPS 2013, PDSEC Workshop, May 24th, 2013 6/17

Partitioning problems with complex objectives

Conventional methods (e.g., nested dissection) do not take these
objectives into account and usually achieve bad imbalance ratios.
Predictor-corrector approach [Moulitsas & Karypis ’04, Pınar &
Hendrickson ’01]: refine an initial partition provided by standard
tools. Improves balance but predictor step is complex.
Some (somewhat) failed attempts: compute a (cover or edge)
separator, transform into wide separator, extract a new separator
(vertex cover) that improves balance. Large increase in cut. . .
We use a Recursive Hypergraph Bisection with dynamic weights
[Kaya, Rouet, Uçar ’11].

F.-H. Rouet, IPDPS 2013, PDSEC Workshop, May 24th, 2013 7/17

Hypergraph partitioning

Hypergraph

A hypergraph H = (V,N) is a set of vertices V and a set of
hyperedges (nets) N , where a net h ∈ N is a subset of vertices.

Hypergraph partitioning (NP-complete)

Partition the vertices into a given number of parts of (almost) same
size, so that some cutsize metric is minimized; e.g.

con1 =
∑
n∈N

c(n)(λ(n) − 1) , or cnet =
∑
n∈N

c(n) , or soed =
∑
n∈N

c(n)λ(n)

1

4

3

58

7

6

2

5

4

3

1

6
2

F.-H. Rouet, IPDPS 2013, PDSEC Workshop, May 24th, 2013 8/17

Hypergraph partitioning

Hypergraph

A hypergraph H = (V,N) is a set of vertices V and a set of
hyperedges (nets) N , where a net h ∈ N is a subset of vertices.

Hypergraph partitioning (NP-complete)

Partition the vertices into a given number of parts of (almost) same
size, so that some cutsize metric is minimized; e.g.

con1 =
∑
n∈N

c(n)(λ(n) − 1) , or cnet =
∑
n∈N

c(n) , or soed =
∑
n∈N

c(n)λ(n)

1

4

3

58

7

6

2

5

4

3

1

6
2

F.-H. Rouet, IPDPS 2013, PDSEC Workshop, May 24th, 2013 8/17

Framework

Recursive bisection paradigm:
1. The first bisection is performed as for the single constraint case.
2. For the subsequent steps: use the partial/coarse information

gathered during the previous step to set secondary constraints
(complex objectives) and use multi-constraint bisection (we use
PaToH [Çatalyürek & Aykanat, ’99]): modify vertex-weights.

Algorithm 1 RB
if not first bisection step then

Use previous bisection information: set secondary constraints.
end if
Bisect with standard tools.
Discard or split nets according to the objective function and create the two
columns sets.
call RB on the first set.
call RB on the second set.

F.-H. Rouet, IPDPS 2013, PDSEC Workshop, May 24th, 2013 9/17

Applying RHB to our problem

Algorithm:
1. Decompose A patternwise as A = MT M [Çatalyürek, Aykanat, Kayaaslan

’09] (M “short and wide” matrix).
2. Permute M into singly-bordered form using RHB and a column-net

model:

1

4

3

58

7

6

2

5

4

3

1

6
2

4 5 1 6 3 2

8
2
7
6

5
1
3
4

Weights:
w(vi , 1)= |{j : mij 6= 0}|2 ⇒ balance on the row stripes of A.
w(vi , 2)= |{j : mij 6= 0 and column j is not cut yet}|2 ⇒ balance on the

diagonal blocks of A.
F.-H. Rouet, IPDPS 2013, PDSEC Workshop, May 24th, 2013 10/17

Results with PDSLin

We compared NGD with PT-Scotch and our RHB approach:
Matrix Alg. Time (s) Iter. nS nD`

nzD`
nzcolE`

nzE`

×102 ×103 ×103 ×100 ×100

dds.quad
NGD 98.3+5.5 18 95 min 35 1408 980 18792

max 58 2372 3292 61880

RHB 90.4+5.3 19 99 min 37 1504 956 17548
max 58 2162 3614 66416

dds.linear
NGD 108.7+7.5 11 44 min 87 1355 305 1695

max 114 1792 2593 14622

RHB 100.7+6.7 10 38 min 87 1346 305 1685
max 112 1762 2267 12566

matrix211
NGD 89.8+8.9 17 121 min 80 3328 1290 15480

max 106 8782 5580 133056

RHB 73.3+9.9 18 130 min 78 6290 1428 17136
max 173 7223 4380 104256

G3_circuit
NGD 26.3+6.9 11 66 min 192 925 975 1718

max 205 985 2493 3944

RHB 22.9+5.3 8 51 min 193 933 899 1749
max 201 969 1750 3300

F.-H. Rouet, IPDPS 2013, PDSEC Workshop, May 24th, 2013 11/17

Reordering sparse RHS for
triangular solution

Triangular solution with sparse RHS

Updating the Schur complement consists of triangular solutions
(L`, U`) with multiple sparse RHS (F`, E`).
We rely on the elimination tree of D`:

Theorem [Gilbert ’86, Gilbert & Liu ’93]

The structure of L−1b is the union of paths in the tree for the
nodes in struct(b) to the root node.

Example:
Solution of L x = [0 1 0 1 0 0]T

Node 1 is not accessed.

6

2

3

5

4

1

F.-H. Rouet, IPDPS 2013, PDSEC Workshop, May 24th, 2013 13/17

Multiple RHS

Right-hand sides are processed by blocks of size B. Within a block,
operations are performed on the union of the different solution
vectors. Some padded zeros are introduced.

Ordering/partitioning matters; example with 4 RHS and B = 2:
1 2 3 4
X 0 X 0
0 X
0 X X X

1 3 2 4
X X

X 0
0 X X X

We have a simple heuristic and a hypergraph model.
We tackled a similar (but actually quite different) problem in an
out-of-core context (cf. [Amestoy et al. ’12]).

F.-H. Rouet, IPDPS 2013, PDSEC Workshop, May 24th, 2013 14/17

Two approaches

1. Simple heuristic: ordering RHS according to their first nonzero,
following the postordering of the elimination tree. This is
inexpensive and increases similarities between consecutive
columns but only one path is taken into account.

2. Hypergraph model: partitioning the row-net model of the RHS
matrix (interface) with the con1 metric minimizes the number of
padded zeros (con1 and padded zeros differ by a constant). This
hypergraph can be easily sparsified by removing quasi-dense rows.

F.-H. Rouet, IPDPS 2013, PDSEC Workshop, May 24th, 2013 15/17

Results

Padded zeros vs block size B:

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

block size

fra
ct

io
n

of
 p

ad
de

d
ze

ro
s

natural
postorder
hypergraph

Matrix tdr190k
N = 1.1 M, NZ = 43.3 M
Accelerator cavity design.

0 50 100 150 200 250 300
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

block size

fra
ct

io
n

of
 p

ad
de

d
ze

ro
s

natural
postorder
hypergraph

Matrix matrix211
N = 0.8 M, NZ = 55.8 M

Fusion (M3D-C1).

F.-H. Rouet, IPDPS 2013, PDSEC Workshop, May 24th, 2013 16/17

Results

Time for updating the Schur complement vs block size B:

0 50 100 150 200 250
0

5

10

15

20

block size

so
lu

tio
n

tim
e

(s
)

natural
postorder
hypergraph

Matrix tdr190k
N = 1.1 M, NZ = 43.3 M
Accelerator cavity design.

0 50 100 150 200 250 300
0

5

10

15

20

block size

so
lu

tio
n

tim
e

(s
)

natural
postorder
hypergraph

Matrix matrix211
N = 0.8 M, NZ = 55.8 M

Fusion (M3D-C1).

F.-H. Rouet, IPDPS 2013, PDSEC Workshop, May 24th, 2013 16/17

Conclusion

Multi-constraint partitioning:
• Using Recursive Hypergraph Bisection improves load balance,

usually at the price of a moderate increase in the size of the Schur
complement.

• Total run time of PDSLin decreases (∼ 10− 50% for our
applications of interest, accelerator modeling and fusion).

• Parallel algorithms?
Reordering sparse right-hand sides:

• Using the row-net hypergraph model or the postordering heuristic
decreases the amount of padded zeros.

• Practical gains in PDSLin: Schur complement update time
decreased by ∼ 30%.

F.-H. Rouet, IPDPS 2013, PDSEC Workshop, May 24th, 2013 17/17

	Multi-constraint partitioning
	Reordering sparse RHS for triangular solution

